
Practical Static Analysis for NASA

Kestrel Technology

NASA Ames Research Center

Guillaume Brat
and

Arnaud Venet



Outline

• Motivation
• Static analysis

– Quick overview
– Targeted error classes

• Research goal elicitation
– The MPF experience
– Research gaps

• The present
– C Global Surveyor
– Status

• Future work
– Mission impact
– MDS



Why do we need formal software verification?

A float overflow causes the crash of Ariane 501

A badly initialized variable caused Mars Polar Lander to crash on Mars

I shouldn’t have turned 
off the engine so soon…



Static Analysis

Static analysis offers compile-time techniques for predicting 
safe and computable approximations to the set of values 

arising dynamically at run-time when executing the program

the analysis is done
without executing the program

all possible values
(and more) are computed

We use abstract interpretation techniques 
to extract a safe system of semantic equations 

which can be resolved using lattice theory techniques
to obtain numerical invariants for each program point



Covered Defect Classes

• Static analysis is well-suited for catching runtime errors, e.g.:
– Array-out-bound accesses
– Un-initialized variables/pointers
– Overflow/Underflow
– Invalid arithmetic operations

• Defect classes for Deep Space One:
– Concurrency: race conditions, deadlocks
– Misuse: array out-of-bound, pointer mis-assignments
– Initialization: no value, incorrect value
– Assignment: wrong value, type mismatch
– Computation: wrong equation
– Undefined Ops: FP errors (tan(90)), arithmetic (division by zero)
– Omission: case/switch clauses without defaults
– Scoping Confusion: global/local, static/dynamic 
– Argument Mismatches: missing args, too many args, wrong types, 

uninitialized args
– Finiteness: underflow, overflow



Research Process

PolySpace
C-verifier

MPF DS1

ISS K9

CGS

precision scalability

usability

Experiments on
real NASA code

Identification of
technical gaps

Implementation of
research prototype

Identification of 
commercial tools



PolySpace applied to Mars PathFinder

• Analyzed 3 modules (~20KLoc each) of mature C code for 
runtime errors (RTEs)

• Performed the analysis at level of system integration
– MPF testing was really done at the validation phase

• 80 % Selectivity
– 80% checks have been classified (correct or incorrect) with certainty
– 20% warnings: need to be covered by conventional testing

• Found 2 certain errors in 30 minutes
– But, average run is 12 hours
– Average time spent manually analyzing RTE is 0.5 hours

• ACS module was fairly mature:
– Only 1 red check (NIV) in 25KLocs with 3 threads
– Not critical, but prevented optimization code to execute
– Error is similar to the one that caused Mars Polar Lander’s crash



Practical Static Analysis

PolySpace
C-Verifier

C Global Surveyor
(NASA Ames)

DAEDALUS

Coverity

Scalability (KLOC)

Precision

1000

500

50

80% 95%

GENERAL-PURPOSE
ANALYZERS

SPECIALIZED
ANALYZERS



MPF Legacy
Coding Practice

• Precision: 
– Array cells merge into one

• Scalability: limited by
– Size (< 20KLocs)

– Pointer analysis

– Multithread combinatorics

• Result interpretation

• Usability

• Base data structure: matrix

• Pointers are mainly used 
– to iterate over matrix elements

– in complex loop structures

• Mostly static data
– Marginal use of dynamically 

allocated structures

• Several threads of execution

PolySpace
Limitations

Design Factors



C Global Surveyor

Specialized pointer analysis
precise for top-level pointers
thread sensitive
Supplement pointer info 
with index range constraints

Thread 1 Thread 2

a()

b()

c()

d()

e()

f()

g()

h()

i()

j()

granularity of algorithms is function
context passing: 

low overhead w.r.t. computation time
Distributed abstract interpretation

proc 1

proc 2

proc 3

Incremental refinement of analyses
build analyses on top of each other

simple analyses for 90% of code
complex analyses refines simpler ones

costly analyses for 10% code left

a()

b()

c()

d()

e()

f()

g()

h()

i()

j()

use JPF to generate scenarios
to illustrate certain errors
and to filter false positives

Smart result interpretation

JPFJPF



CGS Status

• Prototype is fully implemented
– Surface pointer analysis

– Array-bound checking

• Current performance on dual 2.2 GHz 
processor with 2 GB memory:
– 45 minutes for MPF (132 KLoc w/o *.h)

– 1 hour 45 minutes for DS1 (275 KLoc w/o *.h)

• Currently under implementation:
– Precise pointer analysis



Mission Impact

MPF

DS1

ISS

20 200

KLoc

650 1M?100 300

‘01

‘03

‘05

Date

MER

Precision ~ 90%

MSL

Adoption of CGS by MSL



An MDS Approach

• Goal: building a static analyzer for MDS using 
specialization

• The idea is to perform V&V at two levels
– Framework level

• Prove very strong semantic properties about the MDS framework

– Adaptation level
• Verify that the code using the MDS framework does the right thing
• Brings static analysis up one level of abstraction towards the system 

level

• Concrete steps using two examples:
– Exception safety checking

• E.g., release locks that were acquired

– Safety checking at pattern level
• E.g., reference-counted smart pointer



Conclusions

• Using static analysis to catch runtime errors

• Ran experiments with commercial tools on real 
NASA software systems (< 275 KLoc)

• Identified scalability and precision problems

• Implemented a scalable static analyzers 
specialized for MPF-based NASA software

• Will use the same philosophy to design a static 
analyzer for MDS applications (MSL mission)


